Bas bet
Tosınnanlı maqala
Jaqın átirapta
Kiriw
Sazlawlar
Qáwenderlik
Wikipedia haqqında
Juwapkershilikten bas tartıw
Izlew
Differensial teńleme
Til
Baqlaw
Redaktorlaw
.
Differensial
ten'lemelerdin' ko'rinisleri
redaktorlaw
d
u
d
x
=
c
u
+
x
2
.
{\displaystyle {\frac {du}{dx}}=cu+x^{2}.}
d
2
u
d
x
2
−
x
d
u
d
x
+
u
=
0.
{\displaystyle {\frac {d^{2}u}{dx^{2}}}-x{\frac {du}{dx}}+u=0.}
d
2
u
d
x
2
+
ω
2
u
=
0.
{\displaystyle {\frac {d^{2}u}{dx^{2}}}+\omega ^{2}u=0.}
d
u
d
x
=
u
2
+
1.
{\displaystyle {\frac {du}{dx}}=u^{2}+1.}
L
d
2
u
d
x
2
+
g
sin
u
=
0.
{\displaystyle L{\frac {d^{2}u}{dx^{2}}}+g\sin u=0.}
∂
u
∂
t
+
t
∂
u
∂
x
=
0.
{\displaystyle {\frac {\partial u}{\partial t}}+t{\frac {\partial u}{\partial x}}=0.}
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
0.
{\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0.}
∂
u
∂
t
=
6
u
∂
u
∂
x
−
∂
3
u
∂
x
3
.
{\displaystyle {\frac {\partial u}{\partial t}}=6u{\frac {\partial u}{\partial x}}-{\frac {\partial ^{3}u}{\partial x^{3}}}.}